Influence Mechanism of Gas–Containing Characteristics of Annulus Submerged Jets on Sealing Degree of Mixing Zone

Author:

Wang ChaoORCID,Wang ChuanzhenORCID,Xie Jun,Khan Md ShakhaoathORCID

Abstract

The introduction of air into a submerged annular jet will result in dispersion of the jet, which will affect the degree of enclosure of the gas–water mixing zone in the annular jet nozzle, and then have a significant impact on air suction and the formation of the foam system in the floatation process. A numerical simulation method is used to analyze the characteristics of the distribution of the axial flow velocity of annular jets, gas–phase volume, and turbulence intensity in the gas–water mixing zone in the nozzle with different air–liquid ratios, and thereby reveal the mechanism whereby gas–containing in annular jets affects the degree of enclosure of the gas–water mixing zone. The results show that as the air–liquid ratio increases, the degree of air–liquid mixing will increase and the radial flow velocity will decrease gradually, resulting in the effective enclosure of the gas–water mixing zone. Meanwhile, the dissipation of jet energy, the range of turbulent flow and the vorticity intensity will increase, but the turbulence intensity will decrease. When the gas–water mixing zone is fully enclosed, as gas–containing continues to increase, the degree of dispersion of the annular jet will further increase. Consequently, the area of the gas–water mixing zone with bounced–back water will become larger, resulting in a higher axial flow velocity, larger local turbulence intensity and larger vorticity intensity. This will lead to the dissipation of jet energy, which is not favorable for air suction.

Funder

Provincial Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3