Abstract
This study illustrates the application of a tri-axial accelerometer and gyroscope sensor device on a trampolinist performing the walking-the-wall manoeuvre on a high-performance trampoline to determine the performer dynamic conditions. This research found that rigid vertical walls would allow the trampolinist to obtain greater control and retain spatial awareness at greater levels than what is achievable on non-rigid vertical walls. With a non-rigid padded wall, the reaction force from the wall can be considered a variable force that is not constrained, and would not always provide the feedback that the trampolinist needs to maintain the balance with each climb up the wall and fall from height. This research postulates that unattenuated vertical walls are safer than attenuated vertical walls for walking-the-wall manoeuvres within trampoline park facilities. This is because non-rigid walls would provide higher g-force reaction feedback from the wall, which would reduce the trampolinist’s control and stability. This was verified by measuring g-force on a horizontal rigid surface versus a non-rigid surface, where the g-force feedback was 27% higher for the non-rigid surface. Control and stability are both critical while performing the complex walking-the-wall manoeuvre. The trampolinist experienced a very high peak g-force, with a maximum g-force of approximately 11.5 g at the bottom of the jump cycle. It was concluded that applying impact attenuation padding to vertical walls used for walking-the-wall and similar activities would increase the likelihood of injury; therefore, padding of these vertical surfaces is not recommended.
Funder
University of Technology Sydney
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference52 articles.
1. Body acceleration distribution and O2 uptake in humans during running and jumping
2. GYMNASTICS History of Trampoline at the Olympic Gameshttps://stillmed.olympic.org/media/Document%20Library/OlympicOrg/Factsheets-Reference-Documents/Games/OG/History-of-sports/Reference-document-Gymnastics-Trampoline-History-at-the-OG.pdf
3. AS EN 16899:2020 Sports and Recreational Equipment—Parkour Equipment —Safety Requirements and Test Methods. Standards Australia, Sydneyhttps://opus.lib.uts.edu.au/handle/10453/145173
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献