Abstract
Due to the limitations of data transfer technologies, existing studies on urban traffic control mainly focused on isolated dimension control such as traffic signal control or vehicle route guidance to alleviate traffic congestion. However, in real traffic, the distribution of traffic flow is the result of multiple dimensions whose future state is influenced by each dimension’s decisions. Presently, the development of the Internet of Vehicles enables an integrated intelligent transportation system. This paper proposes an integrated intelligent transportation model that can optimize predictive traffic signal control and predictive vehicle route guidance simultaneously to alleviate traffic congestion based on their feedback regulation relationship. The challenges of this model lie in that the formulation of the nonlinear feedback relationship between various dimensions is hard to describe and the design of a corresponding solving algorithm that can obtain Pareto optimality for multi-dimension control is complex. In the integrated model, we introduce two medium variables—predictive traffic flow and the predictive waiting time—to two-way link the traffic signal control and vehicle route guidance. Inspired by game theory, an asymmetric information exchange framework-based updating distributed algorithm is designed to solve the integrated model. Finally, an experimental study in two typical traffic scenarios shows that more than 73.33% of the considered cases adopting the integrated model achieve Pareto optimality.
Funder
the Science and Technology Development Fund, MSAR,
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献