Occupant Comfort Management Based on Energy Optimization Using an Environment Prediction Model in Smart Homes

Author:

Jin Wenquan,Ullah Israr,Ahmad ShabirORCID,Kim Dohyeun

Abstract

Occupant comfort management is an important feature of a smart home, which requires achieving a high occupant comfort level as well as minimum energy consumption. Based on a large amount of data, learning models enable us to predict factors of a mathematical model for deriving the optimal result without expensive experiments. Comfort management supports high-level comfort to the occupant in the individual indoor environment, using the optimal power consumption to run home appliances. In this paper, we propose occupant comfort management based on energy optimization, using an environment prediction model. The proposed energy optimization model provides optimal power consumption based on the proposed objective function, which requires temperature and comfort index data as the input parameters. For the input requirement, temperature prediction model and humidity prediction model are presented based on a recurrent neural network with a pre-collected dataset, including indoor and outdoor temperature and humidity sensing data. Using the predicted temperature and humidity data, the comfort index model derives the predicted mean vote value to be used in the energy optimization model with the predicted temperature data. The experimental results present an 8.43% reduction of the optimized power consumption compared to the actual power consumption using mean absolute percentage error to calculate. Moreover, the emulation of an indoor environment using optimal energy consumption presents as approximately similar to the actual data.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3