Radiometric Calibration for Multispectral Camera of Different Imaging Conditions Mounted on a UAV Platform

Author:

Guo Yahui,Senthilnath J.,Wu WenxiangORCID,Zhang Xueqin,Zeng Zhaoqi,Huang Han

Abstract

Unmanned aerial vehicle (UAV) equipped with multispectral cameras for remote sensing (RS) has provided new opportunities for ecological and agricultural related applications for modelling, mapping, and monitoring. However, when the multispectral images are used for the quantitative study, they should be radiometrically calibrated, which accounts for atmospheric and solar conditions by converting the digital number into a unit of scene reflectance that can be directly used in quantitative remote sensing (QRS). Indeed, some of the present applications using multispectral images are processed without precise calibration or with coarse calibration. The radiometric calibration of images from the UAV platform is quite difficult to perform, as the imaging condition is different for every single image. Thus, a standard procedure is necessary for a systematical radiometric calibration method to generate multispectral images with unit reflectance. Further, these images can be used to calculate vegetation indices, which are useful in monitoring vegetation phenology. These vegetation indices are considered as a potential screening tool to know the plant status, such as nitrogen, chlorophyll content, green leaf biomass, etc. This study focuses on a series of radiometric calibrations for multispectral images acquired from different flight altitudes, time instants, and weather conditions. Radiometric calibration for multispectral images is performed using the linear regression method (LRM). The main contribution involves (1) affirming the optimal calibration targets and assessing the atmospheric effects of different flights using the single scene of images; (2) to evaluate the effects of mosaic images with the LRM; (3) to propose and validate a universal calibration equation for the Mini Multiple Camera Array (MCA) 6 camera. The obtained results show that the three calibration targets, such as the dark, moderate, and white, are better for the Mini MCA 6 camera. The atmospheric effects increase with the increase of flight altitudes for each band, and the camera effect is of a fixed number. However, the camera effect and atmospheric attenuation to reflectance from different altitudes were relatively low considering the accuracy assessment. The performance measures namely, mean absolute deviation (indicated as V) and root mean square error (RMSE) between single and mosaic images show that the mosaic will not influence too much reflectance. The LRM performs well in all weather conditions. The universal calibration equation is suitable to apply to the images acquired during a sunny day and even with a little cloud.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3