Optimizing Landsat Next Shortwave Infrared Bands for Crop Residue Characterization

Author:

Lamb Brian T.ORCID,Dennison Philip E.ORCID,Hively W. DeanORCID,Kokaly Raymond F.,Serbin GuyORCID,Wu ZhuotingORCID,Dabney Philip W.,Masek Jeffery G.,Campbell MichaelORCID,Daughtry Craig S. T.ORCID

Abstract

This study focused on optimizing the placement of shortwave infrared (SWIR) bands for pixel-level estimation of fractional crop residue cover (fR) for the upcoming Landsat Next mission. We applied an iterative wavelength shift approach to a database of crop residue field spectra collected in Beltsville, Maryland, USA (n = 916) and computed generalized two- and three-band spectral indices for all wavelength combinations between 2000 and 2350 nm, then used these indices to model field-measured fR. A subset of the full dataset with a Normalized Difference Vegetation Index (NDVI) < 0.3 threshold (n = 643) was generated to evaluate green vegetation impacts on fR estimation. For the two-band wavelength shift analyses applied to the NDVI < 0.3 dataset, a generalized normalized difference using 2226 nm and 2263 nm bands produced the top fR estimation performance (R2 = 0.8222; RMSE = 0.1296). These findings were similar to the established two-band Shortwave Infrared Normalized Difference Residue Index (SINDRI) (R2 = 0.8145; RMSE = 0.1324). Performance of the two-band generalized normalized difference and SINDRI decreased for the full-NDVI dataset (R2 = 0.5865 and 0.4144, respectively). For the three-band wavelength shift analyses applied to the NDVI < 0.3 dataset, a generalized ratio-based index with a 2031–2085–2216 nm band combination, closely matching established Cellulose Absorption Index (CAI) bands, was top performing (R2 = 0.8397; RMSE = 0.1231). Three-band indices with CAI-type wavelengths maintained top fR estimation performance for the full-NDVI dataset with a 2036–2111–2217 nm band combination (R2 = 0.7581; RMSE = 0.1548). The 2036–2111–2217 nm band combination was also top performing in fR estimation (R2 = 0.8690; RMSE = 0.0970) for an additional analysis assessing combined green vegetation cover and surface moisture effects. Our results indicate that a three-band configuration with band centers and wavelength tolerances of 2036 nm (±5 nm), 2097 nm (±14 nm), and 2214 (±11 nm) would optimize Landsat Next SWIR bands for fR estimation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference49 articles.

1. User needs for future Landsat missions;Wu;Remote Sens. Environ.,2019

2. NASA, Goddard Space Flight Center (2020, October 30). Landsat Next Request for Information (RFI), Available online: https://sam.gov/opp/09a18f980f67449fa10608ecb0924883/view?keywords=%22Landsat%20Next%22.

3. The Role of Residues Management in Sustainable Agricultural Systems;Lal;J. Sustain. Agric.,1995

4. Magdoff, F., and Weil, R. (2004). Soil Organic Matter in Sustainable Agriculture, CRC Press.

5. Crop residue is a key for sustaining maximum food production and for conservation of our biosphere;Delgado;J. Soil Water Conserv.,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3