Remote Sensing-Supported Flood Forecasting of Urbanized Watersheds—A Case Study in Southern China

Author:

Gu Yu,Chen Yangbo,Sun Huaizhang,Liu Jun

Abstract

Urbanization has significant impacts on watershed hydrology, but previous studies have been confirmatory and not comprehensive; in particular, few studies have addressed the impact of urbanization on flooding in highly urbanized watersheds. In this study, this effect is studied in Chebei Creek, a highly urbanized watershed in the Pearl River Delta, southern China. Landsat satellite images acquired in 2015 were used to estimate land use and cover changes using the Decision Tree (DT) C4.5 classification algorithm, while the Liuxihe model, a physically based distributed hydrological model (PBDHM), is employed to simulate watershed flooding and hydrological processes. For areas with high degrees of urbanization, the duration of the flood peak is only 1 h, and the flood water level shows steep rises and falls. These characteristics increase the difficulty of flood modeling and forecasting in urbanized areas. At present, hydrological research in urbanized watersheds generally focuses on the quantitative simulation of runoff from urban areas to the watershed, flood flows, peak flood flow, and runoff depth. Few studies have involved real-time flood forecasting in urbanized watersheds. To achieve real-time flood forecasting in urbanized watersheds, PBDHMs and refined underlying surface data based on remote sensing technology are necessary. The Liuxihe model is a PBDHM that can meet the accuracy requirements of inflow flood forecasting for reservoir flood control operations. The accuracies of the two flood forecasting methods used in this study were 83.95% and 97.06%, showing the excellent performance of the Liuxihe model for the real-time flood forecasting of urbanized rivers such as the Chebei Creek watershed.

Funder

the National Natural Science Foundation of China

the Science and Technology Program of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference96 articles.

1. United Nations Population Division (UNPD) (2022, November 25). World Population Prospects, the 2010 Revision. New York: United Nations. Available online: http://esa.un.org/wpp.

2. A coherent set of future land use change scenarios for Europe;Rounsevell;Agric. Ecosyst. Environ.,2006

3. Demography, urbanization and development: Rural push, urban pull and urban push?;Jedwab;J. Urban Econ.,2017

4. The effect of urbanization on floods of different recurrence interval;Hollis;Water Resour. Res.,1975

5. Hydrologic variation with land use across the contiguous United States: Geomorphic and ecological consequences for stream ecosystems;Poff;Geomorphology,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3