MPFINet: A Multilevel Parallel Feature Injection Network for Panchromatic and Multispectral Image Fusion

Author:

Feng Yuting,Jin Xin,Jiang Qian,Wang Quanli,Liu Lin,Yao Shaowen

Abstract

The fusion of a high-spatial-resolution panchromatic (PAN) image and a corresponding low-resolution multispectral (MS) image can yield a high-resolution multispectral (HRMS) image, which is also known as pansharpening. Most previous methods based on convolutional neural networks (CNNs) have achieved remarkable results. However, information of different scales has not been fully mined and utilized, and still produces spectral and spatial distortion. In this work, we propose a multilevel parallel feature injection network that contains three scale levels and two parallel branches. In the feature extraction branch, a multi-scale perception dynamic convolution dense block is proposed to adaptively extract the spatial and spectral information. Then, the sufficient multilevel features are injected into the image reconstruction branch, and an attention fusion module based on the spectral dimension is designed in order to fuse shallow contextual features and deep semantic features. In the image reconstruction branch, cascaded transformer blocks are employed to capture the similarities among the spectral bands of the MS image. Extensive experiments are conducted on the QuickBird and WorldView-3 datasets to demonstrate that MPFINet achieves significant improvement over several state-of-the-art methods on both spatial and spectral quality assessments.

Funder

National Natural Science Foundation of China

Basic Research Project of Yunnan Province

Major Scientific and Technological Project of 495 Yunnan Province

Key Laboratory in Software Engineering of Yunnan

Research and Application of Object detection based on Artificial Intelligence

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3