Storm-Time Relative Total Electron Content Modelling Using Machine Learning Techniques

Author:

Adolfs Marjolijn,Hoque Mohammed Mainul,Shprits Yuri Y.ORCID

Abstract

Accurately predicting total electron content (TEC) during geomagnetic storms is still a challenging task for ionospheric models. In this work, a neural-network (NN)-based model is proposed which predicts relative TEC with respect to the preceding 27-day median TEC, during storm time for the European region (with longitudes 30°W–50°E and latitudes 32.5°N–70°N). The 27-day median TEC (referred to as median TEC), latitude, longitude, universal time, storm time, solar radio flux index F10.7, global storm index SYM-H and geomagnetic activity index Hp30 are used as inputs and the output of the network is the relative TEC. The relative TEC can be converted to the actual TEC knowing the median TEC. The median TEC is calculated at each grid point over the European region considering data from the last 27 days before the storm using global ionosphere maps (GIMs) from international GNSS service (IGS) sources. A storm event is defined when the storm time disturbance index Dst drops below 50 nanotesla. The model was trained with storm-time relative TEC data from the time period of 1998 until 2019 (2015 is excluded) and contains 365 storms. Unseen storm data from 33 storm events during 2015 and 2020 were used to test the model. The UQRG GIMs were used because of their high temporal resolution (15 min) compared to other products from different analysis centers. The NN-based model predictions show the seasonal behavior of the storms including positive and negative storm phases during winter and summer, respectively, and show a mixture of both phases during equinoxes. The model’s performance was also compared with the Neustrelitz TEC model (NTCM) and the NN-based quiet-time TEC model, both developed at the German Aerospace Agency (DLR). The storm model has a root mean squared error (RMSE) of 3.38 TEC units (TECU), which is an improvement by 1.87 TECU compared to the NTCM, where an RMSE of 5.25 TECU was found. This improvement corresponds to a performance increase by 35.6%. The storm-time model outperforms the quiet-time model by 1.34 TECU, which corresponds to a performance increase by 28.4% from 4.72 to 3.38 TECU. The quiet-time model was trained with Carrington averaged TEC and, therefore, is ideal to be used as an input instead of the GIM derived 27-day median. We found an improvement by 0.8 TECU which corresponds to a performance increase by 17% from 4.72 to 3.92 TECU for the storm-time model using the quiet-time-model predicted TEC as an input compared to solely using the quiet-time model.

Funder

German Research Foundation

Initiative and Networking Fund of the Hermann von Helmholtz Association Deutscher Forschungszentren e.V.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3