Performance of Drought Indices in Assessing Rice Yield in North Korea and South Korea under the Different Agricultural Systems

Author:

Park Seonyoung,Lee JaeseORCID,Yeom JongminORCID,Seo Eunkyo,Im JunghoORCID

Abstract

Drought affects a region’s economy intensively and its severity is based on the level of infrastructure present in the affected region. Therefore, it is important not only to reflect on the conventional environmental properties of drought, but also on the infrastructure of the target region for adequate assessment and mitigation. Various drought indices are available to interpret the distinctive meteorological, agricultural, and hydrological characteristics of droughts. However, these drought indices do not consider the effective assessment of damage of drought impact. In this study, we evaluated the applicability of satellite-based drought indices over North Korea and South Korea, which have substantially different agricultural infrastructure systems to understand their characteristics. We compared satellite-based drought indices to in situ-based drought indices, standardized precipitation index (SPI), and rice yield over the Korean Peninsula. Moderate resolution imaging spectroradiometer (MODIS), tropical rainfall measuring mission (TRMM), and global land data assimilation system (GLDAS) data from 2001 to 2018 were used to calculate drought indices. The correlations of the indices in terms of monitoring meteorological and agricultural droughts in rice showed opposite correlation patterns between the two countries. The difference in the prevailing agricultural systems including irrigation resulted in different impacts of drought. Vegetation condition index (VCI) and evaporative stress index (ESI) are best suited to assess agricultural drought under well-irrigated regions as in South Korea. In contrast, most of the drought indices except for temperature condition index (TCI) are suitable for regions with poor agricultural infrastructure as in North Korea.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference53 articles.

1. A review of drought concepts;Mishra;J. Hydrol.,2010

2. Maclean, J.L., Dawe, D.C., and Hettel, G.P. (2002). Rice Almanac: Source Book for the Most Important Economic Activity on Earth, International Rice Research Institute.

3. Abdullah, A.B., Ito, S., and Adhana, K. (April, January 31). Estimate of rice consumption in Asian countries and the world towards 2050. Proceedings of the Workshop and Conference on Rice in the World at Stake, Los Banos, Philippines.

4. A new global database of meteorological drought events from 1951 to 2016;Spinoni;J. Hydrol. Reg. Stud.,2019

5. Drought over East Asia: A review;Zhang;J. Clim.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3