Design and Implementation of Electrochromic Smart Windows with Self-Driven Thermoelectric Power Generation

Author:

Xie Xiaohan1,Ji Haining2ORCID,Wang Lingcan2,Wang Shaomei2,Chen Qi2,Luo Runteng2

Affiliation:

1. School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China

2. School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China

Abstract

Electrochromic smart windows can achieve controllable modulation of color and transmittance under an external electric field with active light and thermal control capabilities, which helps reduce energy consumption caused by building cooling and heating. However, electrochromic smart windows often rely on external power circuits, which greatly affects the independence and portability of smart windows. Based on this, an electrochromic smart window driven by temperature-difference power generation was designed and implemented. This smart window provides automatic and manual control of the reversible cycle of electrochromic glass from light blue to dark blue according to user requirements and changes in the surrounding environment, achieving adaptive adjustment of visual comfort and reducing energy consumption. The infrared radiation rejection (from 780 to 2500 nm) of the electrochromic smart window is as high as 77.3%, and its transmittance (from 380 to 780 nm) fluctuates between 39.2% and 56.4% with changes in working state. Furthermore, the temperature in the indoor simulation device with electrochromic glass as the window was 15 °C lower than that with ordinary glass as the window after heating with a 250 W Philips infrared lamp for ten minutes. After 2000 cycles of testing, the performance of the smart window was basically maintained at its initial values, and it has broad application prospects in buildings, vehicles, and high-speed rail systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3