Exploration and Optimization of the Polymer-Modified NiOx Hole Transport Layer for Fabricating Inverted Perovskite Solar Cells

Author:

Wu You-Wei1,Wang Ching-Ying1ORCID,Yang Sheng-Hsiung1ORCID

Affiliation:

1. Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, No. 301, Section 2, Gaofa 3rd Road, Guiren District, Tainan 711010, Taiwan

Abstract

The recombination of charge carriers at the interface between carrier transport layers such as nickel oxide (NiOx) and the perovskite absorber has long been a challenge in perovskite solar cells (PSCs). To address this issue, we introduced a polymer additive poly(vinyl butyral) into NiOx and subjected it to high-temperature annealing to form a void-containing structure. The formation of voids is confirmed to increase light transmittance and surface area of NiOx, which is beneficial for light absorption and carrier separation within PSCs. Experimental results demonstrate that the incorporation of the polymer additive helped to enhance the hole conductivity and carrier extraction of NiOx with a higher Ni3+/Ni2+ ratio. This also optimized the energy levels of NiOx to match with the perovskite to raise the open-circuit voltage to 1.01 V. By incorporating an additional NiOx layer beneath the polymer-modified NiOx, the device efficiency was further increased as verified from the dark current measurement of devices.

Funder

National Science and Technology Council of Taiwan

Publisher

MDPI AG

Reference57 articles.

1. Electro-optics of perovskite solar cells;Lin;Nat. Photonics,2015

2. Novel broad spectral response perovskite solar cells: A review of the current status and advanced strategies for breaking the theoretical limit efficiency;Liu;J. Mater. Sci. Technol.,2023

3. Nickel Oxide for Perovskite Photovoltaic Cells;Park;Adv. Photonics Res.,2021

4. SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells;Jiang;Small,2018

5. National Renewable Energy Laboratory (NREL) (2024, May 02). Efficiency Chart, Available online: https://www.nrel.gov/pv/cell-efficiency.html.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3