Looseness Identification of Track Fasteners Based on Ultra-Weak FBG Sensing Technology and Convolutional Autoencoder Network

Author:

Li ShengORCID,Jin Liang,Jiang Jinpeng,Wang Honghai,Nan Qiuming,Sun LizhiORCID

Abstract

Changes in the geological environment and track wear, and deterioration of train bogies may lead to the looseness of subway fasteners. Identifying loose fasteners randomly distributed along the subway line is of great significance to avoid train derailment. This paper presents a convolutional autoencoder (CAE) network-based method for identifying fastener loosening features from the distributed vibration responses of track beds detected by an ultra-weak fiber Bragg grating sensing array. For an actual subway tunnel monitoring system, a field experiment used to collect the samples of fastener looseness was designed and implemented, where a crowbar was used to loosen or tighten three pairs of fasteners symmetrical on both sides of the track within the common track bed area and the moving load of a rail inspection vehicle was employed to generate 12 groups of distributed vibration signals of the track bed. The original vibration signals obtained from the on-site test were converted into two-dimensional images through the pseudo-Hilbert scan to facilitate the proposed two-stage CAE network with acceptable capabilities in feature extraction and recognition. The performance of the proposed methodology was quantified by accuracy, precision, recall, and F1-score, and displayed intuitively by t-distributed stochastic neighbor embedding (t-SNE). The raster scan and the Hilbert scan were selected to compare with the pseudo-Hilbert scan under a similar CAE network architecture. The identification performance results represented by the four quantification indicators (accuracy, precision, recall, and F1-score) based on the scan strategy in this paper were at least 23.8%, 9.5%, 20.0%, and 21.1% higher than those of the two common scan methods. As well as that, the clustering visualization by t-SNE further verified that the proposed approach had a stronger ability in distinguishing the feature of fastener looseness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. Fire and life safety for underground facilities: present status of fire and life safety principles related to underground facilities

2. Review of Recent Developments in Fire Detection Technologies

3. Research on optic fiber sensing engineering technology;Jiang;Proceedings of the 22nd International Conference on Optical Fiber Sensors,2012

4. Chapter 1—Introduction and overview of underground sensing for sustainable response;Pamukcu,2018

5. Chapter 6—Fiber-optic underground sensor networks;Soga,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3