Abstract
Skin cancer is a deadly disease, and its early diagnosis enhances the chances of survival. Deep learning algorithms for skin cancer detection have become popular in recent years. A novel framework based on deep learning is proposed in this study for the multiclassification of skin cancer types such as Melanoma, Melanocytic Nevi, Basal Cell Carcinoma and Benign Keratosis. The proposed model is named as SCDNet which combines Vgg16 with convolutional neural networks (CNN) for the classification of different types of skin cancer. Moreover, the accuracy of the proposed method is also compared with the four state-of-the-art pre-trained classifiers in the medical domain named Resnet 50, Inception v3, AlexNet and Vgg19. The performance of the proposed SCDNet classifier, as well as the four state-of-the-art classifiers, is evaluated using the ISIC 2019 dataset. The accuracy rate of the proposed SDCNet is 96.91% for the multiclassification of skin cancer whereas, the accuracy rates for Resnet 50, Alexnet, Vgg19 and Inception-v3 are 95.21%, 93.14%, 94.25% and 92.54%, respectively. The results showed that the proposed SCDNet performed better than the competing classifiers.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference65 articles.
1. Basal and Squamous Cell Skin Cancer Causes Risk Factors, and Prevention
https://www.cancer.org/content/dam/CRC/PDF/Public/8819.00.pdf
2. Skin Cancer Epidemiology, Detection, and Management
3. Ultraviolet Light and Skin Cancer in Athletes
4. Skin Cancers;WHO
5. Diagnostic accuracy of dermoscopy
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献