A Determination Method for Gait Event Based on Acceleration Sensors

Author:

Mei Chang,Gao FarongORCID,Li Ying

Abstract

A gait event is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. However, for the data acquisition of a three-dimensional motion capture (3D Mo-Cap) system, the high cost of setups, such as the high standard laboratory environment, limits widespread clinical application. Inertial sensors are increasingly being used to recognize and classify physical activities in a variety of applications. Inertial sensors are now sufficiently small in size and light in weight to be part of a body sensor network for the collection of human gait data. The acceleration signal has found important applications in human gait recognition. In this paper, using the experimental data from the heel and toe, first the wavelet method was used to remove noise from the acceleration signal, then, based on the threshold of comprehensive change rate of the acceleration signal, the signal was primarily segmented. Subsequently, the vertical acceleration signals, from heel and toe, were integrated twice, to compute their respective vertical displacement. Four gait events were determined in the segmented signal, based on the characteristics of the vertical displacement of heel and toe. The results indicated that the gait events were consistent with the synchronous record of the motion capture system. The method has achieved gait event subdivision, while it has also ensured the accuracy of the defined gait events. The work acts as a valuable reference, to further study gait recognition.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3