Development and Validation of the Predictive Model for the Differentiation between Vestibular Migraine and Meniere’s Disease

Author:

Liu Dan,Guo Zhaoqi,Wang Jun,Tian E,Chen Jingyu,Zhou Liuqing,Kong Weijia,Zhang Sulin

Abstract

(1) Background: Vestibular migraine (VM) and Meniere’s disease (MD) share multiple features in terms of clinical presentations and auditory-vestibular dysfunctions, e.g., vertigo, hearing loss, and headache. Therefore, differentiation between VM and MD is of great significance. (2) Methods: We retrospectively analyzed the medical records of 110 patients with VM and 110 patients with MD. We at first established a regression equation by using logistic regression analysis. Furthermore, sensitivity, specificity, accuracy, positive predicted value (PV), and negative PV of screened parameters were assessed and intuitively displayed by receiver operating characteristic curve (ROC curve). Then, two visualization tools, i.e., nomograph and applet, were established for convenience of clinicians. Furthermore, other patients with VM or MD were recruited to validate the power of the equation by ROC curve and the Gruppo Italiano per la Valutazione degli Interventi in Terapia Intensiva (GiViTI) calibration belt. (3) Results: The clinical manifestations and auditory-vestibular functions could help differentiate VM from MD, including attack frequency (X5), phonophobia (X13), electrocochleogram (ECochG) (X18), head-shaking test (HST) (X23), ocular vestibular evoked myogenic potential (o-VEMP) (X27), and horizontal gain of vestibular autorotation test (VAT) (X30). On the basis of statistically significant parameters screened by Chi-square test and multivariable double logistic regression analysis, we established a regression equation: P = 1/[1 + e−(−2.269× X5 − 2.395× X13 + 2.141× X18 + 3.949 × X23 + 2.798× X27 − 4.275× X30(1) − 5.811× X30(2) + 0.873)] (P, predictive value; e, natural logarithm). Nomographs and applets were used to visualize our result. After validation, the prediction model showed good discriminative power and calibrating power. (4) Conclusions: Our study suggested that a diagnostic algorithm based on available clinical features and an auditory-vestibular function regression equation is clinically effective and feasible as a differentiating tool and could improve the differential diagnosis between VM and MD.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3