Evaluating the Efficacy of Different DEMs for Application in Flood Frequency and Risk Mapping of the Indian Coastal River Basin

Author:

Gangani Parth1ORCID,Mangukiya Nikunj K.2,Mehta Darshan J.1ORCID,Muttil Nitin34ORCID,Rathnayake Upaka5ORCID

Affiliation:

1. Department of Civil Engineering, Dr. S. & S. S. Ghandhy Government Engineering College, Surat 395008, Gujarat, India

2. Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India

3. Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia

4. College of Sport, Health and Engineering, Victoria University, Melbourne, VIC 8001, Australia

5. Department of Civil Engineering and Construction, Faculty of Engineering and Design, Atlantic Technological University, F91 YW50 Sligo, Ireland

Abstract

Floods are among the most occurring natural hazards that cause severe damage to infrastructure and loss of life. In India, southern Gujarat is affected during the monsoon season, facing multiple flood events in the Damanganga basin. As the basin is one of the data-scarce regions, evaluating the globally available dataset for flood risk mitigation studies in the Damanganga basin is crucial. In the present study, we compared four open-source digital elevation models (DEMs) (SRTM, Cartosat-1, ALOS-PALSAR, and TanDEMX) for hydrodynamic (HD) modeling and flood risk mapping. The simulated HD models for multiple flood events using HEC-RAS v6.3 were calibrated by adopting different roughness coefficients based on land-use land cover, observed water levels at gauge sites, and peak flood depths in the flood plain. In contrast to the previous studies on the Purna river basin (the neighboring basin of Damanganga), the present study shows that Cartosat-1 DEM provides reliable results with the observed flood depth. Furthermore, the calibrated HD model was used to determine the flood risk corresponding to 10, 25, 50, and 100-year return period floods calculated using Gumbel’s extreme value (GEV) and log-Pearson type III (LP-III) distribution techniques. Comparing the obtained peak floods corresponding to different return periods with the observed peak floods revealed that the LP-III method gives more reliable estimates of flood peaks for lower return periods, while the GEV method gives comparatively more reliable estimates for higher return period floods. The study shows that evaluating different open-source data and techniques is crucial for developing reliable flood mitigation plans with practical implications.

Publisher

MDPI AG

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3