Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6

Author:

Andrade-Velázquez Mercedes1,Montero-Martínez Martín José2ORCID

Affiliation:

1. Cátedra CONACYT—Centro del Cambio Global y la Sustentabilidad (CCGS), Calle Centenario del Instituto Juárez S/N, Colonia Reforma, Villahermosa CP 86080, Mexico

2. Instituto Mexicano de Tecnología del Agua, Subcoordinación de Eventos Extremos y Cambio Climático, Paseo Cuauhnáhuac 8532, Colonia Progreso, Jiutepec CP 62550, Mexico

Abstract

This study aimed to determine the mean temperature trends in the south-southeast region of Mexico during the historical period of 1980–2014, as well as during the future periods of 2021–2040, 2041–2060, and 2081–2100, as recommended by the IPCC. Additionally, the study sought to identify the climate change scenario that is most closely aligned with the socio-environmental conditions of the south-southeast zone of Mexico and that has the greatest impact on the region’s average temperature. The downscaling method of bias correction was conducted at a spatial resolution of 0.25° × 0.25°, and an analysis of historical trends was performed for the period 1980–2014 with ERA5 and four CMIP6 models (CNRM-ESM2-1, IPSL-CM6A-LR, MIROC6, and MRI-ESM2-0). This process was extended to future projections. The models indicated temperature differences of less than 0.5 °C with respect to ERA5, in agreement with other studies. Additionally, the current study calculated future trends for the south-southeast region using three of the CMIP6 scenarios (SSP2-4.5, SSP4-6.0, and SSP5-8.5). The z-eq proposal was used to compare the slopes, enabling us to determine which of the three scenarios corresponded to the historical trend, assuming identical socio-environmental conditions. The SSP4-6.0 scenario was found to correspond to the historical trend.

Funder

Cátedra-CONACYT

Publisher

MDPI AG

Subject

Atmospheric Science

Reference63 articles.

1. Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change;Meehl;B. Am. Meteorol. Soc.,2000

2. IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

3. IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

4. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization;Eyring;Geosci. Model Dev.,2016

5. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3