Applying an Improved Stacking Ensemble Model to Predict the Mortality of ICU Patients with Heart Failure

Author:

Chiu Chih-Chou,Wu Chung-Min,Chien Te-NienORCID,Kao Ling-Jing,Li Chengcheng,Jiang Han-Ling

Abstract

Cardiovascular diseases have been identified as one of the top three causes of death worldwide, with onset and deaths mostly due to heart failure (HF). In ICU, where patients with HF are at increased risk of death and consume significant medical resources, early and accurate prediction of the time of death for patients at high risk of death would enable them to receive appropriate and timely medical care. The data for this study were obtained from the MIMIC-III database, where we collected vital signs and tests for 6699 HF patient during the first 24 h of their first ICU admission. In order to predict the mortality of HF patients in ICUs more precisely, an integrated stacking model is proposed and applied in this paper. In the first stage of dataset classification, the datasets were subjected to first-level classifiers using RF, SVC, KNN, LGBM, Bagging, and Adaboost. Then, the fusion of these six classifier decisions was used to construct and optimize the stacked set of second-level classifiers. The results indicate that our model obtained an accuracy of 95.25% and AUROC of 82.55% in predicting the mortality rate of HF patients, which demonstrates the outstanding capability and efficiency of our method. In addition, the results of this study also revealed that platelets, glucose, and blood urea nitrogen were the clinical features that had the greatest impact on model prediction. The results of this analysis not only improve the understanding of patients’ conditions by healthcare professionals but allow for a more optimal use of healthcare resources.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3