Abstract
This paper links the celebrated Cauchy’s interlacing theorem of eigenvalues for partitioned updated sequences of Hermitian matrices with stability and convergence problems and results of related sequences of matrices. The results are also applied to sequences of factorizations of semidefinite matrices with their complex conjugates ones to obtain sufficiency-type stability results for the factors in those factorizations. Some extensions are given for parallel characterizations of convergent sequences of matrices. In both cases, the updated information has a Hermitian structure, in particular, a symmetric structure occurs if the involved vector and matrices are complex. These results rely on the relation of stable matrices and convergent matrices (those ones being intuitively stable in a discrete context). An epidemic model involving a clustering structure is discussed in light of the given results. Finally, an application is given for a discrete-time aggregation dynamic system where an aggregated subsystem is incorporated into the whole system at each iteration step. The whole aggregation system and the sequence of aggregated subsystems are assumed to be controlled via linear-output feedback. The characterization of the aggregation dynamic system linked to the updating dynamics through the iteration procedure implies that such a system is, generally, time-varying.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献