Task-Level Re-Execution Framework for Improving Fault Tolerance on Symmetry Multiprocessors

Author:

Baek HyeongbooORCID,Lee JaewooORCID

Abstract

Hard real-time systems are employed in military, aeronautics, and astronautics fields where deployed systems are susceptible to software faults that can result in functional errors. Thus, there is a need to use fault-tolerant (FT) real-time scheduling. Among the various fault-tolerant real-time scheduling techniques, re-execution has been applied widely to existing real-time systems owing to its simplicity and applicability. However, re-execution requires multiple executions of every task, and some tasks miss their deadlines owing to the prolonged execution time; therefore, it has been found to be suitable for only soft real-time systems. In this paper, we propose an FT policy that can be incorporated into most (if not all) existing real-time scheduling algorithms on multiprocessor systems, which improves the reliability of the target system without a tradeoff against schedulability. As a case study, we apply the FT policy to existing fixed-priority scheduling and earliest deadline zero-laxity scheduling, and we demonstrate that it enhances reliability without schedulability loss.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3