Abstract
Under partial shading conditions (PSCs), solar photovoltaic (PV) energy systems generate multiple peaks; one global peak (GP) and several local peaks (LPs). Thus, tracking the GP of the PV systems under PSCs is necessary to enhance the system reliability and efficiency. Conventional maximum power point tracker (MPPT) algorithms are capable of tracking the unique peak under uniform conditions but they fail to track the GP under PSCs. To the best of our knowledge, this paper represents the first study that introduces a comprehensive comparison of three efficient maximum power point tracker (MPPT) algorithms that are used to extract the GP of the PV system under both uniform and PSCs. These MPPT techniques include two metaheuristic techniques, which are cuckoo search optimization (CSO) and particle swarm optimization (PSO) techniques in addition to one conventional MPPT; perturb and observe (P&O). Although the simulation and dSPACE-based experimental results demonstrated the superiority of CSO and PSO in tracking the GP, CSO requires less tracking time and thus provides a higher efficiency than the PSO. In addition, P&O can be used to follow the first peak, regardless if it is a local peak or global peak with notable oscillation.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献