Dynamic Productivity Prediction Method of Shale Condensate Gas Reservoir Based on Convolution Equation

Author:

Wang Ping1,Liu Wenchao2,Huang Wensong1,Qiao Chengcheng2ORCID,Jia Yuepeng1,Liu Chen2ORCID

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China

2. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The dynamic productivity prediction of shale condensate gas reservoirs is of great significance to the optimization of stimulation measures. Therefore, in this study, a dynamic productivity prediction method for shale condensate gas reservoirs based on a convolution equation is proposed. The method has been used to predict the dynamic production of 10 multi-stage fractured horizontal wells in the Duvernay shale condensate gas reservoir. The results show that flow-rate deconvolution algorithms can greatly improve the fitting effect of the Blasingame production decline curve when applied to the analysis of unstable production of shale gas condensate reservoirs. Compared with the production decline analysis method in commercial software HIS Harmony RTA, the productivity prediction method based on a convolution equation of shale condensate gas reservoirs has better fitting affect and higher accuracy of recoverable reserves prediction. Compared with the actual production, the error of production predicted by the convolution equation is generally within 10%. This means it is a fast and accurate method. This study enriches the productivity prediction methods of shale condensate gas reservoirs and has important practical significance for the productivity prediction and stimulation optimization of shale condensate gas reservoirs.

Funder

CNPC Innovation Found

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference34 articles.

1. Status and Outlook of Oil Field Chemistry-Assisted Analysis during the Energy Transition Period;Jia;Energy Fuels,2022

2. Mechanical frontiers in shale-gas development;Liu;Adv. Mech.,2019

3. Continuous deepening of world shale gas exploration and development;Zhou;Sino-Glob. Energy,2019

4. Global condensate oil resource potential and exploration fields;Wang;Acta Pet. Sin.,2021

5. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs;Lei;Pet. Explor. Dev.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3