Numerical Study on the Heat Transfer Characteristics of Cu-Water and TiO2-Water Nanofluid in a Circular Horizontal Tube

Author:

Bose Jefferson Raja1,Manova Stephen1,Angeline Appadurai Anitha2,Asirvatham Lazarus Godson13ORCID,Gautam Sneha45ORCID

Affiliation:

1. Department of Mechanical Engineering, School of Engineering and Technology, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India

2. Department of Robotics Engineering, School of Engineering and Technology, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India

3. Centre for Research in Material Science and Thermal Management (CRMSTM), Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India

4. Department of Civil Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India

5. Water Institute, A Centre of Excellence, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India

Abstract

A numerical simulation of convective heat transfer coefficient (hconv) was studied with Cu-Water and TiO2-Water nanofluids flowing through a circular tube subjected to uniform wall heat flux boundary conditions under laminar and turbulent regimes. Four different concentrations of nanofluids (ɸ = 0.5, 1, 1.5 and 2%) were used for the analysis and the Reynolds number (Re) was varied from laminar (500 to 2000) to turbulent flow regime (5000 to 20,000). The dependence of hconv on Re and ɸ was investigated using a single-phase Newtonian approach. In comparison to base fluid, average hconv enhancements of 10.4% and 7.3% were noted, respectively, for the maximum concentration (ɸ = 2%) and Re = 2000 for Cu-Water and TiO2—water nanofluids in the laminar regime. For the same ɸ under the turbulent regime (Re = 20,000), the enhancements were noted to be 14.6% and 13.2% for both the nanofluids, respectively. The random motion (Brownian motion) and heat diffusion (thermophoresis) by nanosized particles are the two major slip mechanisms that have more influence on the enhancement of hconv. In addition, the Nusselt number (Nu) of the present work was validated for water with the Shah and Dittus Boelter equation and found to have good agreement for both the regimes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3