Hybrid Wind-Solar Power System with a Battery-Assisted Quasi-Z-Source Inverter: Optimal Power Generation by Deploying Minimum Sensors

Author:

Bubalo Matija1ORCID,Bašić Mateo1ORCID,Vukadinović Dinko1ORCID,Grgić Ivan1ORCID

Affiliation:

1. Department of Power Engineering, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia

Abstract

This paper presents a hybrid renewable energy system (RES) including wind and photovoltaic (PV) power sources. The wind energy subsystem (WES) consists of a squirrel-cage induction generator (SCIG) driven by a variable-speed wind turbine (WT) and corresponding power electronic converter, by means of which a speed-sensorless indirect-rotor-field-oriented control of the SCIG is implemented. The outputs of both the WES and PV power source rated 1.5 kW and 3.5 kW, respectively, are connected to the DC bus, with the quasi-Z-source inverter (qZSI) acting as an interlinking converter between the DC bus and the AC grid/load. An advanced pulse-width-modulation scheme is applied to reduce the qZSI switching losses. The considered RES can operate both in grid-tie and island operation, whereas the battery storage system—integrated within the qZSI impedance network—enables more efficient energy management. The proposed control scheme includes successively executed algorithms for the optimization of the WES and PV power outputs under varying atmospheric conditions. A perturb-and-observe PV optimization algorithm is executed first due to the significantly faster dynamics and higher-rated power of the PV source compared to the WES. The WES optimization algorithm includes two distinct fuzzy logic optimizations: one for extraction of the maximum wind power and the other for minimization of the SCIG losses. To reduce the number of the required sensors, all three MPPT algorithms utilize the same input variable—the qZSI’s input power—thus increasing the system’s reliability and reducing the cost of implementation. The performance of the proposed hybrid RES was experimentally evaluated over wide ranges of simulated atmospheric conditions in both the island and grid-tie operation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3