Load Forecasting Techniques and Their Applications in Smart Grids

Author:

Habbak Hany1ORCID,Mahmoud Mohamed23ORCID,Metwally Khaled1ORCID,Fouda Mostafa M.4ORCID,Ibrahem Mohamed I.56ORCID

Affiliation:

1. Department of Computer Engineering and AI, Military Technical College, Cairo 11766, Egypt

2. Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN 38505, USA

3. KINDI Center and the Department of Electrical and Computer Engineering, Qatar University, Doha P.O. Box 2713, Qatar

4. Department of Electrical and Computer Engineering, College of Science and Engineering, Idaho State University, Pocatello, ID 83209, USA

5. Department of Cyber Security Engineering, George Mason University, Fairfax, VA 22030, USA

6. Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt

Abstract

The growing success of smart grids (SGs) is driving increased interest in load forecasting (LF) as accurate predictions of energy demand are crucial for ensuring the reliability, stability, and efficiency of SGs. LF techniques aid SGs in making decisions related to power operation and planning upgrades, and can help provide efficient and reliable power services at fair prices. Advances in artificial intelligence (AI), specifically in machine learning (ML) and deep learning (DL), have also played a significant role in improving the precision of demand forecasting. It is important to evaluate different LF techniques to identify the most accurate and appropriate one for use in SGs. This paper conducts a systematic review of state-of-the-art forecasting techniques, including traditional techniques, clustering-based techniques, AI-based techniques, and time series-based techniques, and provides an analysis of their performance and results. The aim of this paper is to determine which LF technique is most suitable for specific applications in SGs. The findings indicate that AI-based LF techniques, using ML and neural network (NN) models, have shown the best forecast performance compared to other methods, achieving higher overall root mean squared (RMS) and mean absolute percentage error (MAPE) values.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3