A Review of Remaining Useful Life Prediction for Energy Storage Components Based on Stochastic Filtering Methods

Author:

Shao Liyuan1,Zhang Yong1,Zheng Xiujuan1,He Xin2,Zheng Yufeng3,Liu Zhiwei4

Affiliation:

1. School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

2. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

3. National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering, Wuhan 430079, China

4. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Lithium-ion batteries are a green and environmental energy storage component, which have become the first choice for energy storage due to their high energy density and good cycling performance. Lithium-ion batteries will experience an irreversible process during the charge and discharge cycles, which can cause continuous decay of battery capacity and eventually lead to battery failure. Accurate remaining useful life (RUL) prediction technology is important for the safe use and maintenance of energy storage components. This paper reviews the progress of domestic and international research on RUL prediction methods for energy storage components. Firstly, the failure mechanism of energy storage components is clarified, and then, RUL prediction method of the energy storage components represented by lithium-ion batteries are summarized. Next, the application of the data–model fusion-based method based on kalman filter and particle filter to RUL prediction of lithium-ion batteries are analyzed. The problems faced by RUL prediction of the energy storage components and the future research outlook are discussed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3