Analysis of the Thermal Performance of Isothermal Composite Heat Accumulators Containing Organic Phase-Change Material

Author:

Musiał Michał1ORCID,Lichołai Lech1ORCID,Pękala Agnieszka1ORCID

Affiliation:

1. The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, 35-959 Rzeszów, Poland

Abstract

This paper presents the results of material tests, experimental tests and statistical analysis of the thermal performance of three types of heat accumulators containing an organic phase-change material and two materials of a higher thermal conductivity: a copper mesh and porous coke recyclate. The aim of the research was to empirically and statistically compare the increase in the PCM heat distribution through a copper conductor and coke recyclate. The research was conducted in accordance with an incomplete central compositional experimental design and using the Statistica software. The studies of the structure and chemical composition of the coke recyclate used and the empirical testing of the finished heat accumulators confirmed an improvement in the distribution and storage of heat by the accumulator with the phase-change material and coke recyclate compared to the pure phase-change material and copper-conductor accumulators, as the holding time of a temperature of 20 °C was extended by seven minutes and nine minutes, respectively. Moreover, the results of the statistical analysis provided answers as to which of the assumed input quantities—initial temperature, battery geometry, and heating temperature—were statistically significant for each of the three battery types considered. The determined approximating functions were verified in terms of the statistical validity of their use for all three types of heat accumulators tested. The results obtained are important answers to the current problems in the design and modification of phase-change heat accumulators applied in the construction industry to reduce the emissivity of structures and increase their energy efficiency.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3