Analysis of Reconstruction Energy Efficiency in EIT and ECT 3D Tomography Based on Elastic Net

Author:

Przysucha Bartosz1ORCID,Wójcik Dariusz23ORCID,Rymarczyk Tomasz23ORCID,Król Krzysztof23ORCID,Kozłowski Edward1ORCID,Gąsior Marcin1ORCID

Affiliation:

1. Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland

2. WSEI University, 20-209 Lublin, Poland

3. Research & Development Center, Netrix S.A., 20-704 Lublin, Poland

Abstract

The main goal of this paper is to research and analyze the problem of image reconstruction performance using machine learning methods in 3D electrical capacitance tomography (ECT) and electrical impedance tomography (EIT) by comparing the areas inside the tank to determine the finite elements for which one of the method reconstructions is more effective. The research was conducted on 5000 simulated cases, which ranged from one to five inclusions generated for a cylindrical tank. The authors first used the elastic net learning method to perform the reconstruction and then proposed a method for testing the effectiveness of reconstruction. Based on this approach, the reconstructions obtained by each method were compared, and the areas within the object were identified. Finally, the results obtained from the simulation tests were verified on real measurements made with two types of tomographs. It was found that areas closer to the edge of the tank were more effectively reconstructed by EIT, while ECT reconstructed areas closer to the center of the tank. Extensive analysis of the inclusions makes it possible to use this measurement for energy optimization of industrial processes and biogas plant operation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3