Research on State-of-Health Estimation for Lithium-Ion Batteries Based on the Charging Phase

Author:

Du Changqing123ORCID,Qi Rui123,Ren Zhong123,Xiao Di123

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528200, China

3. Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China

Abstract

The lithium-ion battery state of health (SOH) estimation is an essential parameter to ensure the safety and stability of the life cycle of electric vehicles. Accurate SOH estimation has been an industry puzzle and a hot topic in academia. To solve the problem of low fitting accuracy of lithium-ion battery SOH estimation in a traditional neural network, a nonlinear autoregressive with exogenous input (NARX) neural network is proposed based on the charging stage. Firstly, six health factors related to the lithium-ion battery aging state are acquired at the charging stage because the charging process has better applicability and simplicity than the discharging process in actual operation. Then six health factors are pre-processed using the principal component analysis (PCA) method. The principal component of the input variable is selected as the input of the neural network, which reduces the dimension of input compared with the neural network model without principal component analysis. The correlation between the inputs is eliminated. To verify the rationality of the proposed algorithm, two public aging datasets are used to develop and validate it. Moreover, the proposed PCA-NARX method is compared with the other two neural networks. The simulation results show that the proposed method can achieve accurate SOH estimation for different types of lithium-ion batteries under different conditions. The average mean absolute error (MAE) and root mean square error (RMSE) are 0.68% and 0.94%, respectively. Compared with other neural networks, the prediction error is reduced by more than 50% on average, which demonstrates the effectiveness of the proposed SOH estimation method.

Funder

Key R&D project of Hubei Province, China

Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guang-dong Laboratory

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3