Combing Triple-Part Features of Convolutional Neural Networks for Scene Classification in Remote Sensing

Author:

Huang HongORCID,Xu Kejie

Abstract

High spatial resolution remote sensing (HSRRS) images contain complex geometrical structures and spatial patterns, and thus HSRRS scene classification has become a significant challenge in the remote sensing community. In recent years, convolutional neural network (CNN)-based methods have attracted tremendous attention and obtained excellent performance in scene classification. However, traditional CNN-based methods focus on processing original red-green-blue (RGB) image-based features or CNN-based single-layer features to achieve the scene representation, and ignore that texture images or each layer of CNNs contain discriminating information. To address the above-mentioned drawbacks, a CaffeNet-based method termed CTFCNN is proposed to effectively explore the discriminating ability of a pre-trained CNN in this paper. At first, the pretrained CNN model is employed as a feature extractor to obtain convolutional features from multiple layers, fully connected (FC) features, and local binary pattern (LBP)-based FC features. Then, a new improved bag-of-view-word (iBoVW) coding method is developed to represent the discriminating information from each convolutional layer. Finally, weighted concatenation is employed to combine different features for classification. Experiments on the UC-Merced dataset and Aerial Image Dataset (AID) demonstrate that the proposed CTFCNN method performs significantly better than some state-of-the-art methods, and the overall accuracy can reach 98.44% and 94.91%, respectively. This indicates that the proposed framework can provide a discriminating description for HSRRS images.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3