Abstract
High spatial resolution remote sensing (HSRRS) images contain complex geometrical structures and spatial patterns, and thus HSRRS scene classification has become a significant challenge in the remote sensing community. In recent years, convolutional neural network (CNN)-based methods have attracted tremendous attention and obtained excellent performance in scene classification. However, traditional CNN-based methods focus on processing original red-green-blue (RGB) image-based features or CNN-based single-layer features to achieve the scene representation, and ignore that texture images or each layer of CNNs contain discriminating information. To address the above-mentioned drawbacks, a CaffeNet-based method termed CTFCNN is proposed to effectively explore the discriminating ability of a pre-trained CNN in this paper. At first, the pretrained CNN model is employed as a feature extractor to obtain convolutional features from multiple layers, fully connected (FC) features, and local binary pattern (LBP)-based FC features. Then, a new improved bag-of-view-word (iBoVW) coding method is developed to represent the discriminating information from each convolutional layer. Finally, weighted concatenation is employed to combine different features for classification. Experiments on the UC-Merced dataset and Aerial Image Dataset (AID) demonstrate that the proposed CTFCNN method performs significantly better than some state-of-the-art methods, and the overall accuracy can reach 98.44% and 94.91%, respectively. This indicates that the proposed framework can provide a discriminating description for HSRRS images.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献