Abstract
Campylobacter spp infection affects more than 200,000 people every year in Europe and in the last four years a trend shows an increase in campylobacteriosis. The main vehicle for transmission of the bacterium is contaminated food like meat, milk, fruit and vegetables. In this study, the aim was to find characteristic volatile organic compounds (VOCs) of C. jejuni in order to detect its presence with an array of metal oxide (MOX) gas sensors. Using a starting concentration of 103 CFU/mL, VOCs were analyzed using Gas-Chromatography Mass-Spectrometry (GC-MS) with a Solid-Phase Micro Extraction (SPME) technique at the initial time (T0) and after 20 h (T20). It has been found that a Campylobacter sample at T20 is characterized by a higher number of alcohol compounds that the one at T0 and this is due to sugar fermentation. Sensor results showed the ability of the system to follow bacteria curve growth from T0 to T20 using Principal Component Analysis (PCA). In particular, this results in a decrease of ΔR/R0 value over time. For this reason, MOX sensors are a promising technology for the development of a rapid and sensitive system for C. jejuni.
Subject
Clinical Biochemistry,General Medicine
Reference33 articles.
1. Food safety risk
2. Consumers' food safety risk perceptions and willingness to pay for fresh-cut produce with lower risk of foodborne illness
3. European Centers for Disease Prevention and Control, Campylobacteriosis—Annual Epidemiological Report 2016https://ecdc.europa.eu/en/publications-data/campylobacteriosis-annual-epidemiological-report-2016-2014-data
4. Heterogeneity of Campylobacter jejuni and Campylobacter coli strains from healthy sheep
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献