A Note on Incompressible Vector Fields

Author:

Bin Turki Nasser1ORCID

Affiliation:

1. Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

In this paper, we use incompressible vector fields for characterizing Killing vector fields. We show that on a compact Riemannian manifold, a nontrivial incompressible vector field has a certain lower bound on the integral of the Ricci curvature in the direction of the incompressible vector field if, and only if, the vector field ξ is Killing. We also show that a nontrivial incompressible vector field ξ on a compact Riemannian manifold is a Jacobi-type vector field if, and only if, ξ is Killing. Finally, we show that a nontrivial incompressible vector field ξ on a connected Riemannian manifold has a certain lower bound on the Ricci curvature in the direction of ξ, and if ξ is also a geodesic vector field, it necessarily implies that ξ is Killing.

Funder

Researchers Supporting Project

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

1. Aris, R. (1989). Vectors, Tensors, and the Basic Equations of FluidMechanics, Dover Publisher.

2. Davidson, P.A. (2017). Introduction to Magnetohydrodynamics, Cambridge University Press. [2nd ed.].

3. Geodesic vector fields and Eikonal equation on a Riemannian manifold;Deshmukh;Indag. Math.,2019

4. Euclidean submanifolds with incompressible canonical vector field;Chen;Sib. Math. J.,2017

5. A link between harmonicity of 2-distance functions and incompressibility of canonical canonical vector fields;Chen;Tamkang J. Math.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3