Three Alternative Model-Building Strategies Using Quasi-Hermitian Time-Dependent Observables

Author:

Znojil Miloslav12ORCID

Affiliation:

1. Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic

2. The Czech Academy of Sciences, Nuclear Physics Institute, Hlavní 130, 25068 Řež, Czech Republic

Abstract

In the conventional (so-called Schrödinger-picture) formulation of quantum theory the operators of observables are chosen self-adjoint and time-independent. In the recent innovation of the theory, the operators can be not only non-Hermitian but also time-dependent. The formalism (called non-Hermitian interaction-picture, NIP) requires a separate description of the evolution of the time-dependent states ψ(t) (using Schrödinger-type equations) as well as of the time-dependent observables Λj(t), j=1,2,…,K (using Heisenberg-type equations). In the unitary-evolution dynamical regime of our interest, both of the respective generators of the evolution (viz., in our notation, the Schrödingerian generator G(t) and the Heisenbergian generator Σ(t)) have, in general, complex spectra. Only the spectrum of their superposition remains real. Thus, only the observable superposition H(t)=G(t)+Σ(t) (representing the instantaneous energies) should be called Hamiltonian. In applications, nevertheless, the mathematically consistent models can be based not only on the initial knowledge of the energy operator H(t) (forming a “dynamical” model-building strategy) but also, alternatively, on the knowledge of the Coriolis force Σ(t) (forming a “kinematical” model-building strategy), or on the initial knowledge of the Schrödingerian generator G(t) (forming, for some reason, one of the most popular strategies in the literature). In our present paper, every such choice (marked as “one”, “two” or “three”, respectively) is shown to lead to a construction recipe with a specific range of applicability.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference54 articles.

1. Nine formulations of quantum mechanics;Styer;Am. J. Phys.,2002

2. Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle;Scholtz;Ann. Phys.,1992

3. Pseudo-Hermitian Representation of Quantum Mechanics;Mostafazadeh;Int. J. Geom. Meth. Mod. Phys.,2010

4. Dieudonne, J. (1961). Proc. Int. Symp. Lin. Spaces, Pergamon.

5. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry;Bender;Phys. Rev. Lett.,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3