Hybrid Fuzzy K-Medoids and Cat and Mouse-Based Optimizer for Markov Weighted Fuzzy Time Series

Author:

Dewi Deshinta Arrova1ORCID,Surono Sugiyarto2ORCID,Thinakaran Rajermani2,Nurraihan Afif1

Affiliation:

1. Department of Mathematics, Ahmad Dahlan University, Yogyakarta 55166, Indonesia

2. Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia

Abstract

This study seeks to test novel capabilities, specifically those of the hybrid fuzzy k-medoids (FKM) and cat and mouse-based optimizer (CMBO) partitioning approach, in overcoming the Markov weighted fuzzy time series (MWFTS) limitation in creating U talk intervals without fundamental standards. Researchers created a hybrid cat and mouse-based optimizer–fuzzy k-medoids (CMBOFKM) approach to be used with MWTS, since these limits may impair the accuracy of the MWFTS approach. Symmetrically, the hybrid method of CMBOFKM is an amalgamation of the FKM and CMBO methods, with the CMBO method playing a part in optimizing the cluster center of the FKM partition method to obtain the best U membership matrix value as the medoid value that will be used in the MWFTS’s fuzzification stage. Air quality data from Klang, Malaysia are used in the MWFTS–CMBOFKM technique. The evaluation of the model error values, known as mean absolute percentage error (MAPE) and root mean square error, yields the MWFTS–CMBOFKM evaluation findings that are displayed (RMSE). A 6.85% MAPE percentage and a 6071 RMSE score are shown by MWFTS–CMBOFKM using air quality data from Klang, Malaysia. The FKM partition approach can be hybridized with additional optimization techniques in the future to increase the MWFTS method’s precision.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference27 articles.

1. Prediksi Kualitas Udara Menggunakan Algoritma K-Nearest Neighbor;Amalia;JIPI (Jurnal Ilm. Penelit. Pembelajaran Inform.,2022

2. Forecasting of Sudan Inflation Rates using ARIMA Model;Abdulrahman;Int. J. Econ. Financ. Issues,2018

3. Putri, R.M., and Widodo, E. (2018). Application of Support Vector Machine Method for Rupiah Exchange Rate to Us Dollar Forecasting. Pros. Semin. Nas. Int., 27–36. Available online: https://jurnal.unimus.ac.id/index.php/psn12012010/article/view/4085.

4. Implementasi Fuzzy Time Series pada Prediksi Jumlah Penjualan Rumah;Ramadhan;J. Sist. Teknol. Inf. (JUSTIN),2020

5. Forecasting enrollments with fuzzy time series—Part I;Song;Fuzzy Sets Syst.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3