Evaluation of Thermodynamic Parameters for Cu(II) Ions Biosorption on Algae Biomass and Derived Biochars

Author:

Ciobanu Alina Alexandra1,Bulgariu Dumitru23,Ionescu Ioana Alexandra4,Puiu Diana Maria4,Vasile Gabriela Geanina4ORCID,Bulgariu Laura1ORCID

Affiliation:

1. Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, Technical University Gheorghe Asachi of Iasi, 700050 Iaşi, Romania

2. Department of Geology, Faculty of Geography and Geology, “Al.I.Cuza” University of Iaşi, 700050 Iaşi, Romania

3. Romanian Academy, Filial of Iaşi, Branch of Geography, 700050 Iaşi, Romania

4. National Research and Development Institute for Industrial Ecology, 060652 Bucharest, Romania

Abstract

The removal of metal ions by biosorption on inexpensive materials is still a challenge for environmental engineering research. In this study, marine green algae biomass (Ulva lactuca sp.) and the biochars obtained from this biomass, at 320 °C (BC-320) and 550 °C (BC-550), were used as biosorbents for the removal of Cu(II) ions from aqueous solution. In addition to comparing the biosorption capacities, the determination of the thermodynamic parameters allows the choice of the most suitable material for the biosorption processes. The experimental results, obtained for Cu(II) ions biosorption on each biosorbent (algae biomass (AB), BC-320 and BC-550), at three different temperatures (10, 30 and 50 °C) were analyzed using Langmuir and Freundlich isotherm models, while pseudo-first order, pseudo-second order and intra-particle diffusions models were used to model the kinetic data. The biosorption of Cu(II) ions is best described by the Langmuir model and the pseudo-second kinetic model, regardless of the type of biosorbent. Such behavior is characteristic for the retention of metal ions on low-cost materials, and is explained in the literature using the concepts of molecular symmetry. The maximum biosorption capacity (qmax, mg/g) depends on the temperature, but also on the type of biosorbent, and follow the order: BC-320 < AB < BC-550. Using the experimental isotherms, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) for the biosorption of Cu(II) ions on each biosorbent were calculated. The analysis of the obtained values constitutes the main arguments in choosing BC-550 as the most effective biosorbent for the removal of Cu(II) ions from aqueous media.

Funder

Network of excellence in applied research and innovation for doctoral and postdoctoral programs/InoHubDoc

European Social Fund financing agreement

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3