Theoretical Aspects for Bayesian Predictions Based on Three-Parameter Burr-XII Distribution and Its Applications in Climatic Data

Author:

Hasaballah Mustafa M.1ORCID,Al-Babtain Abdulhakim A.2ORCID,Hossain Md. Moyazzem3ORCID,Bakr Mahmoud E.2

Affiliation:

1. Marg Higher Institute for Engineering and Modern Technology, Cairo 11511, Egypt

2. Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. School of Mathematics, Statistics & Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Abstract

Symmetry and asymmetry play vital roles in prediction. Symmetrical data, which follows a predictable pattern, is easier to predict compared to asymmetrical data, which lacks a predictable pattern. Symmetry helps identify patterns within data that can be utilized in predictive models, while asymmetry aids in identifying outliers or anomalies that should be considered in the predictive model. Among the various factors associated with storms and their impact on surface temperatures, wind speed stands out as a significant factor. This paper focuses on predicting wind speed by utilizing unified hybrid censoring data from the three-parameter Burr-XII distribution. Bayesian prediction bounds for future observations are obtained using both one-sample and two-sample prediction techniques. As explicit expressions for Bayesian predictions of one and two samples are unavailable, we propose the use of the Gibbs sampling process in the Markov chain Monte Carlo framework to obtain estimated predictive distributions. Furthermore, we present a climatic data application to demonstrate the developed uncertainty procedures. Additionally, a simulation research is carried out to examine and contrast the effectiveness of the suggested methods. The results reveal that the Bayes estimates for the parameters outperformed the Maximum likelihood estimators.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3