Prospects for Charged Higgs Bosons in Natural SUSY Models at the High-Luminosity LHC

Author:

Baer Howard12ORCID,Barger Vernon2,Tata Xerxes3,Zhang Kairui2

Affiliation:

1. Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA

2. Department of Physics, University of Wisconsin, Madison, WI 53706, USA

3. Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 53706, USA

Abstract

We continue our examination of prospects for the discovery of heavy Higgs bosons of natural SUSY (natSUSY) models at the high luminosity LHC (HL-LHC), this time focusing on charged Higgs bosons. In natSUSY, higgsinos are expected at the few hundred GeV scale whilst electroweak gauginos inhabit the TeV scale and the heavy Higgs bosons, H, A and H± could range up tens of TeV without jeopardizing naturalness. For TeV-scale heavy SUSY Higgs bosons H, A and H±, as currently required by LHC searches, SUSY decays into gaugino plus higgsino can dominate H± decays provided these decays are kinematically accessible. The visible decay products of higgsinos are soft making them largely invisible, whilst the gauginos decay to W, Z or h plus missing transverse energy (ET). Charged Higgs bosons are dominantly produced at LHC14 via the parton subprocess, gb→H±t. In this paper, we examine the viability of observing signatures from H±→τν, H±→tb and H±→W,Z,h+ET events produced in association with a top quark at the HL-LHC over large Standard Model (SM) backgrounds from (mainly) tt¯, tt¯V and tt¯h production (where V=W,Z). We find that the greatest reach is found via the SM H±(→τν)+t channel with a subdominant contribution from the H±(→tb)+t channel. Unlike for neutral Higgs searches, the SUSY decay modes appear to be unimportant for H± searches at the HL-LHC. We delineate regions of the mA vs. tanβ plane, mostly around mA∼ 1–2 TeV, where signals from charged Higgs bosons would serve to confirm signals of a heavy, neutral Higgs boson at the 5σ level or, alternatively, to exclude heavy Higgs bosons at the 95% confidence level at the high luminosity LHC.

Funder

U.S. Department of Energy, Office of Science, Office of High Energy Physics

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3