Generalized Common Best Proximity Point Results in Fuzzy Metric Spaces with Application

Author:

Ishtiaq Umar1ORCID,Jahangeer Fahad2,Kattan Doha A.3ORCID,Argyros Ioannis K.4

Affiliation:

1. Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore 54770, Pakistan

2. Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad 44000, Pakistan

3. Department of Mathematics, Faculty of Sciences and Arts, King Abdulaziz University, Rabigh 21589, Saudi Arabia

4. Department of Computing and Mathematical Sciences, Cameron University, Lawton, OK 73505, USA

Abstract

The symmetry of fuzzy metric spaces has benefits for flexibility, ambiguity tolerance, resilience, compatibility, and applicability. They provide a more comprehensive description of similarity and offer a solid framework for working with ambiguous and imprecise data. We give fuzzy versions of some celebrated iterative mappings. Further, we provide different concrete conditions on the real valued functions J,S:(0,1]→R for the existence of the best proximity point of generalized fuzzy (J,S)-iterative mappings in the setting of fuzzy metric space. Furthermore, we utilize fuzzy versions of J,S-proximal contraction, J,S-interpolative Reich–Rus–Ciric-type proximal contractions, J,S-Kannan type proximal contraction and J,S-interpolative Hardy Roger’s type proximal contraction to examine the common best proximity points in fuzzy metric space. Also, we establish several non-trivial examples and an application to support our results.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference21 articles.

1. Some results on fixed points;Kannan;Bull. Calcutta Math. Soc.,1968

2. Interpolative Kannan-Meir-Keeler type contraction;Karapinar;Adv. Theory Nonlinear Anal. Appl.,2021

3. New results on Perov-interpolative contractions of Suzuki type mappings;Fulga;J. Funct. Spaces,2021

4. Interpolative Rus-Reich-Ćirić type contractions via simulation functions. Analele ştiinţifice ale Universităţii “Ovidius" Constanţa;Agarwal;Ser. Mat.,2019

5. Karapınar, E., Alqahtani, O., and Aydi, H. (2018). On interpolative Hardy-Rogers type contractions. Symmetry, 11.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3