A Lightweight Identification Method for Complex Power Industry Tasks Based on Knowledge Distillation and Network Pruning

Author:

Wang Wendi1,Zhou Xiangling2,Jiang Chengling3,Zhu Hong1,Yu Hao1,Wang Shufan1

Affiliation:

1. Nanjing Power Supply Branch, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210019, China

2. State Grid Hubei Electric Power Co., Ltd., Wuhan 430077, China

3. State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210024, China

Abstract

Lightweight service identification models are very important for resource-constrained distribution grid systems. To address the increasingly larger deep learning models, we provide a method for the lightweight identification of complex power services based on knowledge distillation and network pruning. Specifically, a pruning method based on Taylor expansion is first used to rank the importance of the parameters of the small-scale network and delete some of the parameters, compressing the model parameters and reducing the amount of operation and complexity. Then, knowledge distillation is used to migrate the knowledge from the large-scale network ResNet50 to the small-scale network so that the small-scale network can fit the soft-label information output from the large-scale neural network through the loss function to complete the knowledge migration of the large-scale neural network. Experimental results show that this method can compress the model size of the small network and improve the recognition accuracy. Compared with the original small network, the model accuracy is improved by 2.24 percentage points to 97.24%. The number of model parameters is compressed by 81.9% and the number of floating-point operations is compressed by 92.1%, making it more suitable for deployment in resource-constrained devices.

Funder

Science and Technology Project of State Grid Corporation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collaborative Multi-Teacher Distillation for Multi-Task Fault Detection in Power Distribution Grid;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3