A Lightweight Identification Method for Complex Power Industry Tasks Based on Knowledge Distillation and Network Pruning
Author:
Affiliation:
1. Nanjing Power Supply Branch, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210019, China
2. State Grid Hubei Electric Power Co., Ltd., Wuhan 430077, China
3. State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210024, China
Abstract
Funder
Science and Technology Project of State Grid Corporation of China
Publisher
MDPI AG
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Link
https://www.mdpi.com/2227-9717/11/9/2780/pdf
Reference25 articles.
1. FPGA-Based Network Traffic Classification Using Machine Learning;Elnawawy;IEEE Access,2020
2. Konopa, M., Fesl, J., and Janecek, J. (2020, January 13–15). Promising new techniques for computer network traffic classification: A survey. Proceedings of the 2020 10th International Conference on Advanced Computer Information Technologies, Deggendorf, Germany.
3. Wang, Z., Zhao, G., Su, Y., Wu, P., Jiang, D., and Bu, X. (2021, January 11–13). New business identification model of power marketing inspection based on K-means clustering and text classification. Proceedings of the 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT), Changsha, China.
4. Deng, Q. (2019, January 10–12). Transmission Section Identification in a Power System Considering Impacts of a Natural Gas Network. Proceedings of the 2019 9th International Conference on Power and Energy Systems (ICPES), Perth, WA, Australia.
5. Zhong, B. (2022, January 19–21). Research on the identification of network traffic anomalies in the access layer of power IoT based on extreme learning machine. Proceedings of the 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC), Kunming, China.
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Collaborative Multi-Teacher Distillation for Multi-Task Fault Detection in Power Distribution Grid;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3