Research and Evaluation of Foam-Drainage Corrosion-Inhibition Hydrate Anti-Aggregation Integrated Agent

Author:

Ni Weijun1,Yang Guohao1,Dong Jie23,Pan Yansong2,Chen Gang2ORCID,Gu Xuefan4

Affiliation:

1. College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China

2. Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi’an Shiyou University, Xi’an 710065, China

3. Sinopec Shanghai Gaoqiao Petrochemical Co., Ltd., Shanghai 200129, China

4. Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University, Xi’an 710065, China

Abstract

In natural gas exploitation, foam drainage, corrosion inhibition and hydrate inhibition of wellbore fluid are conventional operations. However, there is often a problem where multiple chemical agents cannot be effectively used together and can only be used separately, resulting in complex production processes. In this study, the final integrated formulation was determined: 0.1% sodium alpha-olefin sulfonate (AOST) + 0.3% dodecyl dimethyl betaine (BS-12) + 0.3% sodium lignosulfonate + 0.5% hydrazine hydrate. The minimum tension of the integrated agent could be reduced to 23.5 mN/m. The initial foaming height of the integrated agent was 21.5 cm at 65 °C, the liquid-carrying capacity was 143 mL, and the liquid-carrying rate reached 71.5%. The maximum corrosion depth also decreased from 11.52 µm without the addition of hydrazine hydrate, gradually decreasing to 5.24 µm as the concentration of hydrazine hydrate increased. After adding an integrated agent, the growth rate of hydrates was slow and aggregation did not easily occur, and the formation temperature was also more demanding. Therefore, the integrated agent has a inhibitory effect on the formation of hydrates and has a good anti-aggregation effect. From the observation of the microstructure, the emulsion is an oil-in-water type, and the integrated agent adsorbs at the oil–water interface, preventing the dispersed water droplets in the oil phase from coalescing in one place. The oil-in-water type emulsion is more likely to improve the performance of the natural gas hydrate anti-aggregation agent.

Funder

Shaanxi Provincial Education Department

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3