Wet Oxidation of Pharmaceutical Sludge for the Treatment and Production of Value-Added Materials

Author:

Fang Kaiyu1,Zeng Xu1,Yao Guodong1,Xia Siqing1,Zhao Jianfu1,Zhou Yangyuan12,Zhu Yuting1,Li Xuejun1,Qu Chanjuan1

Affiliation:

1. State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

2. Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Evironmental Research Institute, 1994 Linggongtang Road, Jiaxing 314051, China

Abstract

The wet oxidation of pharmaceutical sludge for the treatment and production of value-added materials was investigated. The experiments were carried out in a stainless-steel autoclave reactor with chemical synthetic pharmaceutical sludge. The highest removal rate of total suspended solids (90.1%) and volatile suspended solids (98.4%) was achieved at 260 °C for 60 min with an initial oxygen pressure of 0.8 MPa. Simultaneously, the total chemical oxygen demand removal rate (78.7%) and the soluble chemical oxygen demand removal rate (81.6%) were obtained. The volatile fatty acid concentration—including acetic acid, propanoic acid, isobutyric acid and isovaleric acid—increased to 4819 mg/L with pH 12.56, which indicated the possibility of improving the quality of wet oxidized sludge solution as a potential carbon source by adding reagents. Scanning electron microscopy images showed that the sludge became a loose porous structure after wet oxidation, which is beneficial for dewatering performance. Energy dispersive spectroscopy images illustrate that carbon elements in sludge migrate from solid to liquid phases during the wet oxidation process. These results provide meaningful data for the design of further works and demonstrate that wet oxidation is a promising method for the treatment of pharmaceutical sludge, and the produced volatile fatty acids, including acetic acid and propanoic acid, are potential carbon sources for the biological treatment of wastewater.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3