Energy and Exergy Analysis of Hydrogen-Based Fluidized Bed Direct Reduction towards Efficient Fossil-Free Ironmaking

Author:

Du Zhan12,Liu Wanchao1,Pan Feng23,Zou Zheng23

Affiliation:

1. Chinalco Environmental Protection and Energy Conservation Group Co., Ltd., Xiong’an 071700, China

2. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

3. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Hydrogen-based fluidized bed direct reduction (H-FBDR) is an important and promising route for fossil-free ironmaking. In this study, to achieve the optimal operation state of energy use and exergy efficiency, the influences of the metallization process and the ratios of H2 injected on the energy and exergy flows in the H-FBDR process are studied. The results show that the thermodynamically designed two-stage reduction process (first: Fe2O3→FeO; second: FeO→Fe) requires a smaller H2 quantity than other metallization processes. According to the mass, energy, and exergy balance analyses, variations in the H2 consumption, exergy destruction, and energy/exergy losses of the overall system, iron ore preheater (F1), fluidized bed reactor system (R), heat exchanger (E), and gas preheater (F2) with different ratios of H2 injected (η) are derived. The total H2 consumption, total exergy destruction, and energy/exergy losses rise with increasing η, and sharp increases are observed from η = 1.3 to η = 1.8. The exergy efficiencies (φ) can be ranked as φR > φE > φF1 ≈ φF2, and the exergy destruction in components F1 and F2 is mainly caused by the combustion reaction, whereas physical exergy destruction dominates for components R and E. The performances of components F1, E, and F2 degrade from η = 1.0 to η = 1.8, and significant degradation arises when η exceeds 1.3. Thus, considering the H2 consumption, thermodynamic efficiency, and energy/exergy losses, the ratio of H2 injected should be set below 1.3. Notably, although the energy loss in the H-FBDR system is 2 GJ/h at η = 1.3, the exergy loss is only 360 MJ/h, in which the recycled gases from component E occupy 320 MJ/h, whereas the total exergy destruction is 900 MJ/h. Therefore, improving the performance of operation units, particularly the components F1 and F2, is as important as recovering the heat loss from component E for optimizing the H-FBDR process.

Funder

National Natural Science Foundation of China

Chinalco Environmental Protection and Energy Conservation Group Co., Ltd.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3