Iron and Hydrogen Peroxidation-Induced Post-Treatment Improvement of Municipal Mesophilic Digestate in an Alkaline Environment and Its Impact on Biosolids Quality

Author:

Hyder Umme Sharmeen1,AlSayed Ahmed2,Elbeshbishy Elsayed1,McPhee Joseph3,Misir Reshmi3

Affiliation:

1. Department of Civil Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

2. Department of Civil Engineering, Northwestern University, 633 Clark St., Evanston, IL 60208, USA

3. Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5G 2A7, Canada

Abstract

Challenges associated with mesophilic digestate (MD) involve volume, odor, and pathogens, which effective post-digestion treatments can address. The efficiency of MD post-treatment can be enhanced by conditioning with ferric chloride (FeCl3), hydrogen peroxide (H2O2), and polymer. This study aimed to observe the effect of combined chemical conditioning on volume reduction, phosphorus (P) release, odor, and pathogen reduction potential for MD. MD was conditioned with polymer only, polymer and FeCl3 at pH adjusted to 8.0 with lime (Ca(OH)2), and a blend of polymer, FeCl3, and hydrogen peroxide (H2O2) at pH 8.0. The results show that adding all three chemicals improved post-treatment efficiency at 2.1 kg/t DS FeCl3, 2.1 kg/t DS polymer, and 600 mg/L H2O2 at pH 8.0, compared with polymer or dual conditioning. At the combined dose, cake solid content, centrate P removal, and odor reduction capability improved compared with raw MD by 20%, 99%, and 66%, respectively. Combined chemical treatment reduced fecal coliform by 98% but does not fulfil class A requirements and showed 50% regrowth potential. The synergic effect of polymer, FeCl3, H2O2, and alkaline pH breakdown EPS, reduced water holding capacity and formed compacted flocs for better water removal and settling. This combination also precipitated P through FeCl3 while H2O2 oxidation curbs odor, enhancing further P removal from centrate.

Funder

Toronto Metropolitan University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3