Study on Performance Optimization of Water-Rich Grouting Materials Based on Response Surface Methodology

Author:

Li Xiaoping1,Han Guoping1,Wang Yong1,Xu Jie1,Du Jie1,Yang Bo1,Zhang Min1,Li Tao1,Li Bo2

Affiliation:

1. Tunlan Mine, Shanxi Coking Coal Group Co., Ltd., Gujiao 030206, China

2. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China

Abstract

The quality of borehole sealing is a key factor affecting the efficiency of gas production. A new water-rich grouting material (RW) with composite coagulant and other additives was prepared in this study to overcome the disadvantages of long setting time and low stone rate of traditional cement materials. When the coagulants A is 4 g and coagulants B is 2 g, the setting time of RW material was reduced by 60.85% and 50.62%, which significantly shortened the setting time of the RW material, respectively. Based on the orthogonal method, 29 groups of comparative experiments were designed to investigate the interaction mechanism between different additives on the performance index of RW, including setting time, water secretion rate, and compressive strength. Quadratic regression equations were fitted using the response surface method. All the correlation coefficients R2 of each response model were greater than 0.97, R2 and R2adj were less than 0.2 through variance analysis, indicating a high correlation between the actual and prediction results. The water–cement ratio had the most significant effect among all factors on setting time, water secretion rate, and compressive strength of the RW material. The scanning electron microscope (SEM) was used to compared the micromorphological characteristics of RW and conventional Portland cement material (PC). The results showed that the hydration products of RW were mostly smack ettringite, calcium silicate hydrate gel, and calcium hydroxide, which interweaved with each other to form a network structure that was denser than the PC material. Furthermore, the interface bonding degree between RW and injected coal was tighter than that of PC, without obvious cracks at the slurry–coal interface. The results indicate that the addition of composite coagulant can significantly accelerate the hydration process of RW material and also enhance the interface strength of injected coal, which is conducive to improving the grouting quality and sealing effect of the extraction borehole.

Funder

National Natural Science Foundation of China

Sponsored by Program for Science &Technology Innovation Talents in Universities of Henan Province

Henan Provincial Science and Technology Research Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3