Quantitative Evaluation System of Upper Limb Motor Function of Stroke Patients Based on Desktop Rehabilitation Robot

Author:

Zhang Mingliang,Chen Jing,Ling Zongquan,Zhang Bochao,Yan Yanxin,Xiong Daxi,Guo Liquan

Abstract

Rehabilitation training and movement evaluation after stroke have become a research hotspot as stroke has become a very common and harmful disease. However, traditional rehabilitation training and evaluation are mainly conducted under the guidance of rehabilitation doctors. The evaluation process is time-consuming and the evaluation results are greatly influenced by doctors. In this study, a desktop upper limb rehabilitation robot was designed and a quantitative evaluation system of upper limb motor function for stroke patients was proposed. The kinematics and dynamics data of stroke patients during active training were collected by sensors. Combined with the scores of patients’ upper limb motor function by rehabilitation doctors using the Wolf Motor Function Test (WMFT) scale, three different quantitative evaluation models of upper limb motor function based on Back Propagation Neural Network (BPNN), K-Nearest Neighbors (KNN), and Support Vector Regression (SVR) algorithms were established. To verify the effectiveness of the quantitative evaluation system, 10 healthy subjects and 21 stroke patients were recruited for experiments. The experimental results show that the BPNN model has the best evaluation performance among the three quantitative evaluation models. The scoring accuracy of the BPNN model reached up to 87.1%. Moreover, there was a significant correlation between the models′ scores and the doctors′ scores. The proposed system can help doctors to quantitatively evaluate the upper limb motor function of stroke patients and accurately master the rehabilitation progress of patients.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3