An Adaptive Sampling Algorithm with Dynamic Iterative Probability Adjustment Incorporating Positional Information

Author:

Liu Yanbing1ORCID,Chen Liping1,Chen Yu1ORCID,Ding Jianwan1

Affiliation:

1. School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430070, China

Abstract

Physics-informed neural networks (PINNs) have garnered widespread use for solving a variety of complex partial differential equations (PDEs). Nevertheless, when addressing certain specific problem types, traditional sampling algorithms still reveal deficiencies in efficiency and precision. In response, this paper builds upon the progress of adaptive sampling techniques, addressing the inadequacy of existing algorithms to fully leverage the spatial location information of sample points, and introduces an innovative adaptive sampling method. This approach incorporates the Dual Inverse Distance Weighting (DIDW) algorithm, embedding the spatial characteristics of sampling points within the probability sampling process. Furthermore, it introduces reward factors derived from reinforcement learning principles to dynamically refine the probability sampling formula. This strategy more effectively captures the essential characteristics of PDEs with each iteration. We utilize sparsely connected networks and have adjusted the sampling process, which has proven to effectively reduce the training time. In numerical experiments on fluid mechanics problems, such as the two-dimensional Burgers’ equation with sharp solutions, pipe flow, flow around a circular cylinder, lid-driven cavity flow, and Kovasznay flow, our proposed adaptive sampling algorithm markedly enhances accuracy over conventional PINN methods, validating the algorithm’s efficacy.

Funder

Key R&D Program of Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3