Ising’s Roots and the Transfer-Matrix Eigenvalues

Author:

Folk Reinhard1,Holovatch Yurij2345ORCID

Affiliation:

1. Institute for Theoretical Physics, Johannes Kepler University Linz, 4040 Linz, Austria

2. Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine

3. 𝕃4 Collaboration and Doctoral College for the Statistical Physics of Complex Systems, Lviv-Leipzig-Lorraine-Coventry, 79011 Lviv, Ukraine

4. Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 5FB, UK

5. Complexity Science Hub Vienna, 1080 Vienna, Austria

Abstract

Today, the Ising model is an archetype describing collective ordering processes. As such, it is widely known in physics and far beyond. Less known is the fact that the thesis defended by Ernst Ising 100 years ago (in 1924) contained not only the solution of what we call now the ‘classical 1D Ising model’ but also other problems. Some of these problems, as well as the method of their solution, are the subject of this note. In particular, we discuss the combinatorial method Ernst Ising used to calculate the partition function for a chain of elementary magnets. In the thermodynamic limit, this method leads to the result that the partition function is given by the roots of a certain polynomial. We explicitly show that ‘Ising’s roots’ that arise within the combinatorial treatment are also recovered by the eigenvalues of the transfer matrix, a concept that was introduced much later. Moreover, we discuss the generalization of the two-state model to a three-state one presented in Ising’s thesis, which is not included in his famous paper of 1925 (E. Ising, Z. Physik 31 (1925) 253). The latter model can be considered as a forerunner of the now-abundant models with many-component order parameters.

Funder

Austrian Academy of Sciences

Publisher

MDPI AG

Reference30 articles.

1. Ising, E. (2024, May 09). Beitrag zur Theorie des Ferro- und Paramagnetismus; Dissertation zur Erlangung der Doktorwürde der Mathematisch- Naturwissenschaftlichen Fakultät der Hamburgischen Universität Vorgelegt von Ernst Ising aus Bochum. Hamburg 1924. An Excerpt of the Thesis “Contribution to the Theory of Ferromagnetism” Translated by Jane Ising and Tom Cummings Can Be Found on the Webpage of the Bibliotheca Augustina. Available online: http://www.icmp.lviv.ua/ising/books.html.

2. Beitrag zur Theorie des Ferromagnetismus;Ising;Z. Physik,1925

3. Pauli, W. (1932). Rapports et Discussions du Sixième Conseil de Physique tenu à Bruxelles du 20 au 25 Octobre 1930, Gautirer-Villars.

4. Bitter, F. (1937). Introduction to Ferromagnetism, McGraw-Hill.

5. Statistics of the Two-Dimensional Ferromagnet. Part I;Kramers;Phys. Rev.,1941

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3