Abstract
Although urban parks sequester carbon by vegetation growth, they emit carbon due to materials production, transport, construction, management, demolition, and disposal throughout their life cycle. This study estimated the carbon budget of urban parks over their life cycle according to land cover type and explored ecological design and construction strategies to maximize carbon reduction. After setting up the scope of the life cycle, the energy and material used for each stage were analyzed on the basis of field survey, design and construction details, and literature review of 30 study parks. The net carbon uptake per unit of park area averaged 8.51 kg/m2, with urban parks playing an important role as a source of carbon uptake to mitigate the climate change. This study suggested ecological design and construction strategies including the expansion of tree planting spaces through the minimization of grass and impervious areas, the minimization of changes to existing topography, and the utilization of local materials. As a result of applying these strategies to study parks, the net carbon uptake increased approximately 9.2 times. These study results are expected to be useful as information for the implementation of carbon-neutral policies and greenspace establishment projects.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献