Affiliation:
1. Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK
Abstract
Reinforcement learning has been used on a variety of control tasks for drones, including, in previous work at the University of Bristol, on perching manoeuvres with sweep-wing aircraft. In this paper, a new aircraft model is presented representing flight up to very high angles of attack where the aerodynamic models are highly nonlinear. The model is employed to develop high-alpha manoeuvres, using reinforcement learning to exploit the nonlinearities at the edge of the flight envelope, enabling fixed-wing operations in tightly confined spaces. Training networks for multiple manoeuvres is also demonstrated. The approach is shown to generate controllers that take full advantage of the aircraft capability. It is suggested that a combination of these neural network-based controllers, together with classical model predictive control, could be used to operate efficiently within the low alpha flight regime and, yet, respond rapidly in confined spaces where high alpha, agile manoeuvres are required.
Funder
Engineering and Physical Sciences Research Council
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献